Minggu, 17 Juli 2016

PMRI

Pembelajaran Matematika Realistik Indonesia (PMRI)
Diajukan untuk memenuhi tugas mata kuliah Pembelajaran Inovatif II


Dosen Pengampu Mata Kuliah : Lestariningsih, S.Pd, M.Pd
Oleh
NOVITASARI      (1431060)

PROGRAM STUDI PENDIDIKAN MATEMATIKA
SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) PGRI
SIDOARJO
2016

A.   Sejarah dan landasan filosofis Matematika Realistik
     Pendidikan matematika realistik atau Realistic Mathematics Education (RME) mulai berkembang karena adanya keinginan meninjau kembali pendidikan matematika di Belanda yang dirasakan kurang bermakna bagi pebelajar. Gerakan ini mula-mula diprakarsai oleh Wijdeveld dan Goffre (1968) melalui proyek Wiskobas. Selanjutnya bentuk RME yang ada sampai sekarang sebagian besar ditentukan oleh pandangan Freudenthal (1977) tentang matematika. Menurut pandangannya matematika harus dikaitkan dengan kenyataan, dekat dengan pengalaman anak dan relevan terhadap masyarakat, dengan tujuan menjadi bagian dari nilai kemanusiaan. Selain memandang matematika sebagai subyek yang ditransfer, Freudenthal menekankan ide matematika sebagai suatu kegiatan kemanusiaan. Pelajaran matematika harus memberikan kesempatan kepada pebelajar untuk “dibimbing” dan “menemukan kembali” matematika dengan melakukannya. Artinya dalam pendidikan matematika dengan sasaran utama matematika sebagai kegiatan dan bukan sistem tertutup. Jadi fokus pembelajaran matematika harus pada kegiatan bermatematika atau “matematisasi” (Freudental,1968).
       Kemudian Treffers (1978, 1987) secara eksplisit merumuskan ide tersebut dalam 2 tipe matematisasi dalam konteks pendidikan, yaitu matematisasi horisontal dan vertikal. Pada matematisasi horizontal siswa diberi perkakas matematika yang dapat menolongnya menyusun dan memecahkan masalah dalam kehidupan sehari-hari.Matematisasi vertikal di pihak lain merupakan proses reorganisasi dalam sistem matematis, misalnya menemukan hubungan langsung dari keterkaitan antar konsep-konsep dan strategi-strategi dan kemudian menerapkan temuan tersebut. Jadi matematisasi horisontal bertolak dari ranah nyata menuju ranah simbol, sedangkan matematisasi vertikal bergerak dalam ranah simbol. Kedua bentuk matematisasi ini sesungguhnya tidak berbeda maknanya dan sama nilainya (Freudenthal, 1991). Hal ini disebabkan oleh pemaknaan “realistik” yang berasal dari bahasa Belanda “realiseren” yang artinya bukan berhubungan dengan kenyataan, tetapi “membayangkan”. Kegiatan “membayangkan” ini ternyata akan lebih mudah dilakukan apabila bertolak dari dunia nyata, tetapi tidak selamanya harus melalui cara itu.

B.  Karakteristik Pendidikan Matematika Realistik.
     Pendidikan Matematika Realistik mencerminkan pandangan matematika tertentu mengenai bagaimana anak belajar matematika dan bagaimana matematika harus diajarkan.Pandangan ini tercermin pada 6 prinsip, yang diturunkan dari 5 kaidah yang dikemukakan Treffers (1987) yaitu eksplorasi fenomenologis menggunakan konteks, menjembatani dengan menggunakan instrumen vertikal, konstruksi dan produksi oleh pebelajar sendiri, pembelajaran interaktif, dan jalur-jalur belajar yang saling menjalin. Berdasarkan kaidah-kaidah tersebut, maka keenam prinsip yang merupakan karakteristik pendidikan matematika realistik akan dipaparkan sebagai berikut :

1. Prinsip kegiatan
  Pebelajar harus diperlakukan sebagai partisipan aktif dalam proses pengembangan seluruh perangkat perkakas dan wawasan matematis sendiri. Dalam hal ini pebelajar dihadapkan situasi masalah yang memungkinkan ia membentuk bagian-bagian masalah tersebut dan mengembangkan secara bertahap algoritma, misalnya cara mengalikan dan membagi berdasarkan cara kerja nonformal.

2. Prinsip nyata
   Matematika realistik harus memungkinkan pebelajar dapat menerapkan pemahaman matematika dan perkakas matematikanya untuk memecahkan masalah. Pebelajar harus mempelajari matematika sedemikian hingga bermanfaat dan dapat diterapkan untuk memecahkan masalah sesungguhnya dalam kehidupan.Hanya dalam konteks pemecahan masalah pebelajar dapat mengembangkan perkakas matematis dan pemahaman matematis.

3. Prinsip bertahap
   Belajar matematika artinya pebelajar harus melalui berbagai tahap pemahaman, yaitu dari kemampuan menemukan pemecahan informal yang berhubungan dengan konteks, menuju penciptaan berbagai tahap hubungan langsung dan pembuatan bagan; yang selanjutnya pada perolehan wawasan tentang prinsip-prinsip yang mendasari dan kearifan untuk memperluas hubungan tersebut. Kondisi untuk sampai tahap berikutnya tercermin pada kemampuan yang ditunjukkan pada kegiatan yang dilakukan. Refleksi ini dapat ditunjukkan melalui interaksi. Kekuatan prinsip tahap ini yaitu dapat membimbing pertumbuhan pemahaman matematika pebelajar dan mengarahkan hubungan longitudinal dalam kurikulum matematika.
 
4. Prinsip saling menjalin
   Prinsip saling menjalin ini ditemukan pada setiap jalur matematika, misalnya antar topik-topik seperti kesadaran akan bilangan, mental aritmatika, perkiraan (estimasi), dan algoritma.

5. Prinsip interaksi
    Dalam matematika realistik belajar matematik dipandang sebagai kegiatan sosial. Pendidikan harus dapat memberikan kesempatan bagi para pebelajar untuk saling berbagi strategi dan penemuan mereka. Dengan mendengarkan apa yang ditemukan orang lain dan mendiskusikan temuan ini, pebelajar mendapatkan ide untuk memperbaiki strateginya. Lagi pula interaksi dapat menghasilkan refleksi yang memungkinkan pebelajar meraih tahap pemahaman yang lebih tinggi.

6.Prinsip bimbingan
   Pengajar maupun program pendidikan mempunyai peranan terpenting dalam mengarahkan pebelajar untuk memperoleh pengetahuan. Mereka mengendalikan proses pembelajaran yang lentur untuk menunjukkan apa yang harus dipelajari untuk menghindarkan pemahaman semu melalui proses hafalan. Pebelajar memerlukan kesempatan untuk membentuk wawasan dan perkakas matematisnya sendiri, karena itu pengajar harus memberikan lingkungan pembelajaran yang mendukung berlangsungnya proses tersebut. Artinya mereka harus dapat meramalkan bila dan bagaimana mereka dapat mengantisipasi pemahaman dan keterampilan pebelajar untuk mengarahkannya mencapai tujuan pembelajaran. Dalam hal ini perbedaan kemampuan pebelajar harus diperhatikan, sehingga setiap pebelajar mendapatkan kesempatan untuk mengembangkan pengetahuannya dengan cara yang paling cocok untuk mereka masingmasing.

C.  Kompetensi yang dikembangkan
      Kompetensi yang dimiliki pebelajar melalui matematika realistik, selain dari kompetensi disiplin ilmu, juga kompetensi memproduksi, merefleksikan dan berinteraksi. Hal ini sesuai dengan tiga pilar pendidikan matematika yaitu refleksi, konstruksi dan narasi. Melalui bidang ilmunya kompetensi yang dibangun pebelajar matematika realistik adalah berpikir formal, sedangkan melalui proses belajarnya kompetensi yang dicapai adalah memproduksi, merefleksi dan berinteraksi. Melalui pemecahan masalah dalam konteks kehidupan sehari-hari pebelajar diberi kesempatan untuk memproduksi sendiri pemahaman dan perkakas matematisnya. Selanjutnya melalui presentasi temuannya di antara pebelajar dalam dan antar kelompok, semua pebelajar dapat berbagi pengalaman. Setiap orang yang berdiskusi dalam kelompok tersebut dapat merefleksikan temuannya sendiri. Sekaligus dalam diskusi juga dikembangkan kemampuan berinteraksi di antara sesama pebelajar, sehingga kemampuan-kemampuan sosial dapat dikembangkan.

D.  Strategi Pembelajaran
   1. Strategi umum
       Sesuai dengan sifat matematika realistik yang berbasis masalah nyata, maka strategi umum pembelajaran meliputi pemberian masalah untuk dipecahkan pebelajar, pemberian kesempatan kepada pebelajar untuk mengkonstruksi sendiri pemecahan masalah, dan presentasi hasil pemecahan masalah yang disusul dengan diskusi. 

   2. Penerapan untuk Lingkup Sekolah
       Model pembelajaran ini dapat diterapkan untuk semua jenjang persekolahan, mulai dari sekolah dasar, sekolah menengah, maupun perguruan tinggi khususnya pada pembelajaran calon guru, dengan penyesuaian dalam tingkat keabstrakan materi. Pada jenjang-jenjang sekolah yang lebih rendah penekanannya pada matematisasi horisontal yang bertolak dari fakta dalam kehidupan nyata, sedangkan makin tinggi jenjang sekolahnya maka sifatnya akan lebih menitikberatkan pada matematisasi vertikal yang bergerak pada ranah simbol.

E.  Kelebihan dan Kelemahan PMRI

Kelebihan :
  1. PMR memberikan pengertian yang jelas dan operasional kepada siswa tentang keterkaitan antara matematika dengan kehidupan sehari hari (kehidupan dunia nyata) dan kegunaan matematika pada umumnya bagi manusia.
  2. PMR memberikan pengertian yang jelas dan operasional kepada siswa bahwa matematika adalah suatu bidang kajian yang dikonstruksi dan dikembangkan sendiri oleh siswa tidak hanya oleh mereka yang disebut pakar dalam bidang tersebut.
  3. PMR memberikan pengertian yang jelas dan operasional kepada siswa bahwa cara penyelesaian suatu soal atau masalah tidak harus tunggal dan tidak harus sama antara orang yang satu dengan yang lain. Setiap orang bisa menemukan atau menggunakan cara sendiri, asalkan orang itu bersungguh sungguh dalam mengerjakan soal atau masalah tersebut. Selanjutnya dengan membandingkan cara penyelesaian yang satu dengan cara penyelesaian yang lain, akan bisa diperoleh cara penyelesaian yang paling tepat, sesuai dengan proses penyelesaian soal atau masalah tersebut.
  4. PMR memberikan pengertian yang jelas dan operasional kepada siswa bahwa dalam mempelajari matematika, proses pembelajaran merupakan sesuatu yang utama dan untuk mempelajari matematika orang harus menjalani proses itu dan berusaha untuk menemukan sendiri konsep konsep matematika, dengan bantuan pihak lain yang sudah lebih tahu (misalnya guru). Tanpa kemauan untuk menjalani sendiri proses tersebut, pembelajaran yang bermakna tidak akan terjadi.


Kekurangan :
  1. Upaya mengimplementasikan PMR membutuhkan perubahan pandangan yang sangat mendasar mengenai berbagai hal yang tidak mudah untuk dipraktekkan, misalnya mengenai siswa, guru dan peranan soal kontekstual. Di dalam PMR siswa tidak lagi dipandang sebagai pihak yang mempelajari segala sesuatu yang sudah “jadi”, tetapi sebagai pihak yang aktif mengkonstruksi konsep konsep matematika. Guru dipandang lebih sebagai pendamping bagi siswa.
  2. Pencarian soal soal kontekstual yang memenuhi syarat syarat yang dituntut PMR tidak selalu mudah untuk setiap topik matematika yang perlu dipelajari siswa, terlebih lagi karena soal soal tersebut harus bisa diselesaikan dengan bermacam macam cara.
  3. Upaya mendorong siswa agar bisa menemukan berbagai cara untuk menyelesaikan soal, juga bukanlah hal yang mudah bagi seorang guru.
  4. Proses pengembangan kemampuan berpikir siswa melalui soal soal kontekstual, proses pematematikaan horisontal dan proses pematematikaan vertikal juga bukan merupakan sesuatu yang sederhana, karena proses dan mekanisme, berpikir siswa harus diikuti dengan cermat, agar guru bisa membantu siswa dalam melakukan penemuan kembali terhadap konsep konsep matematika tertentu.

Tidak ada komentar:

Posting Komentar